

Mémo d'utilisation des méthodes d'interpolations, Environnement MATLAB.

UE 210 Océanographie instrumentale et méthodologie.

Jean-Philippe Labat

Généralités : Les données

X	Υ	Z	
X ₁	y ₁	Z ₁	
Xi	y _i	Z _i	
X _n	y _n	Z _n	

Exemples:

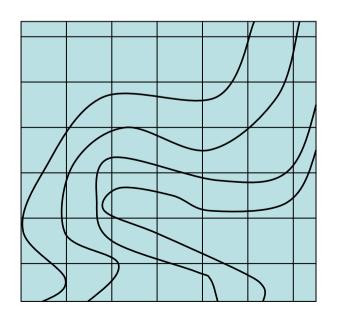
Latitude/longitude/Température Distance/profondeur/Biomasse Temps/Profondeur/Salinité

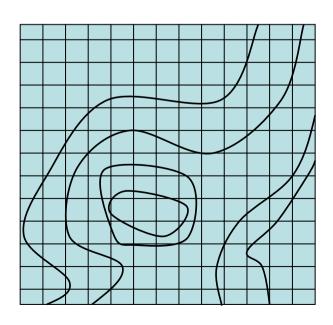
. . .

Généralités : Obtention d'une grille régulière.

A partir de données en x, y, z, il s'agit d'obtenir une grille régulière avec nombre de lignes et colonnes choisies *a priori* par l'utilisateur. Il faut donc calculer une valeur pour chaque noeud de la grille à partir des données irrégulières initiales.

Le choix a priori du nombre de lignes et colonnes et donc du nombre de noeuds a estimer va influer sur le résultat final. Par exemple un grand nombre de noeuds va accroître le lissage mais augmenter les effets locaux souvent appelés "effets d'yeux".

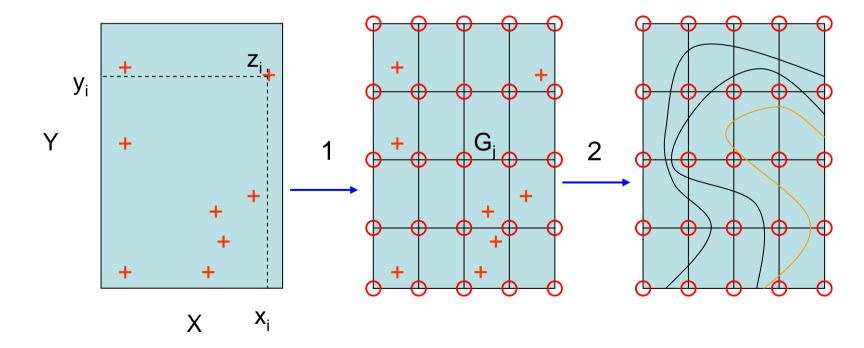




Généralités : mise en oeuvre

Le processus va comprendre deux étapes :

- 1. la construction d'une grille régulière à partir de données irrégulières du type x_i , y_i , z_i ,
- 2. la deuxième une représentation graphique par isolignes ou surface 3D.



Formule générale :

• { Z1, Z2,...., Zn,}

$$G_j = \sum_{i=1}^n w_{ij}.Z_i$$

- G_i est la valeur du noeud j,
- n nombre de points utilisés pour l'interpolation,
- Z_i, la valeur du ieme point,
- W_{ij} le poids associé au ieme point, varie entre 0 et 1, la somme des n W_{ij} est égale à 1.

Pour que la solution soit non-biaisée, la somme des poids, les Wi, doit être égale à 1.

la construction d'une grille régulière A- la grille

Générer la grille régulier (n ligne, m colonne) par l'utilisation de la fonction **meshgrid**.

[XI,YI] = meshgrid(Vx,Vy)

construit les coordonnées des points de la grille pour les valeurs Vx et Vy sous forme de deux matrices répétant soit n vecteurs lignes identiques Vx soit m vecteurs colonnes identiques Vy.

exemple:

$$Vx = [1 \ 2 \ 3]$$
; $Vy = [10 \ 11 \ 12 \ 13 \ 14]$
[XI,YI] = **meshgrid**(Vx, Vy);

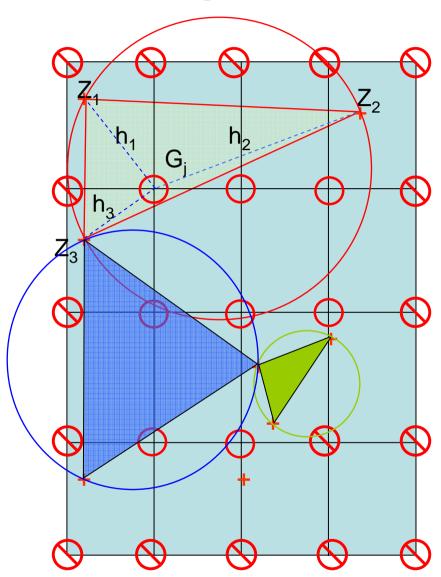
XI =			YI =		
1	2	3	10	10	10
1	2	3	11	11	11
1	2	3	12	12	12
1	2	3	13	13	13
1	2	3	14	14	14

la construction d'une grille régulière
 B- Calcul des valeurs pour chaque nœud de la grille.

Méthodes proposées part Matlab

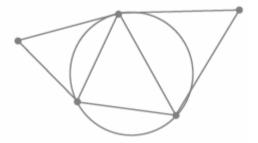
- **Triangulation** (Méthode de Delaunay). Permet de conserver des discontinuités dans les données. L'algorithme crée des triangles entre les points dont les cotés ne se coupent pas.
 - 'linear' Interpolation linéaire (par défaut)
 - 'cubic' Interpolation "cubique".
- Interpolation par le Voisin le plus proche. 'nearest' «
 Nearest neighbour interpolation ».
- 'V4' MATLAB 4 griddata method

Méthode par Triangulation



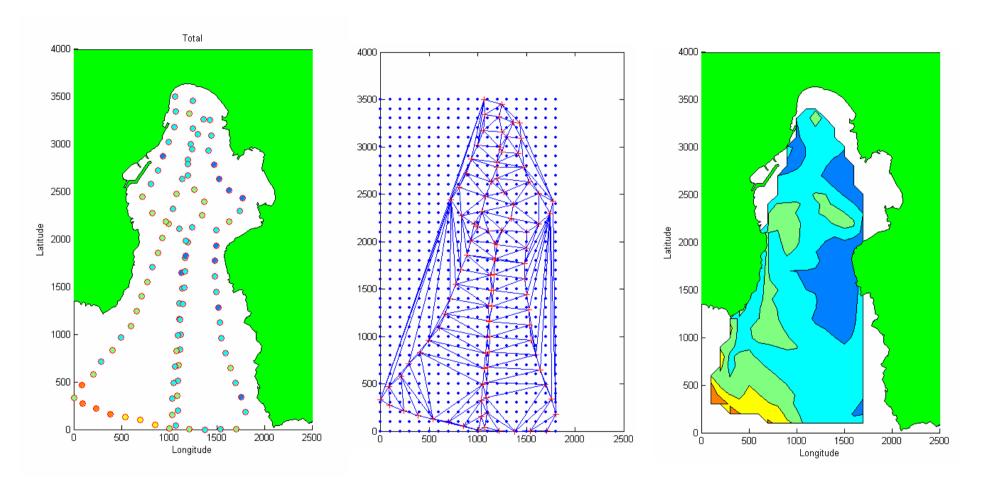
G_j est calculé à partir des 3 valeurs Z du triangle dans lequel il est situé pondérées par l'inverse de la distance h_i.

Triangulation de Delaunay - propriétés du triangle : Le cercle dans lequel chaque triangle est circonscrit ne contient que les points définissant ce triangle



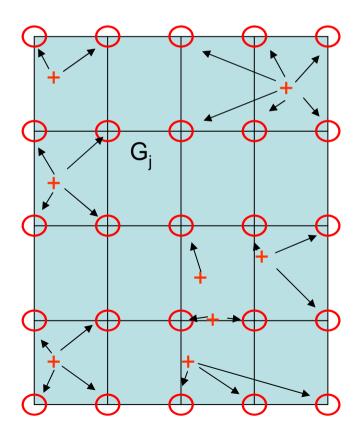
Pratique: On ne peut pas calculer de valeur pour les nœuds de la grille qui ne sont pas compris dans un triangle de points.

Exemple: interpolation par triangulation.



Méthode du Voisin le plus proche.

Chaque nœud de la grille prend la valeur du point observé le plus proche dans l'espace x, y.



Méthode V4

MATLAB 4 griddata method

Sandwell, David T., 1987

Biharmonic Spline Interpolation of GEOS-3 and SEASAT Altimeter Data.

Geophysical Research Letters, 2, 139-142

Interpolation par la fonction « griddata »

Interpoler avec la fonction griddata

$$ZI = griddata(x,y,z,XI,YI,methode)$$

Ou

- x,y,z sont les p triplés des données initiales,
- XI la matrice contenant les valeurs des m coordonnées de la matrice interpolée sur l'axe des X (XI = m vecteurs lignes identiques)
- YI la matrice n x m contenant les valeurs des n coordonnées de la matrice interpolée sur l'axe des Y (YI = n vecteurs colonnées identiques).
- methode = une des méthodes disponibles.

L'interpolation devra tenir compte des relations entre x et y liées à l'anisotropie possible de cet espace.

Anisotropie de l'espace de XY

La relation entre les normes des directions X et Y de l'espace et la variabilité des structures à décrire dans ces mêmes dimensions est un éléments à prendre en compte.

Numériquement les normes des directions X et Y vont influer sur le calcul des valeurs des noeuds de la grille à partir des valeurs observées quand elles sont pondérées par une distance prenant en compte les deux dimensions.

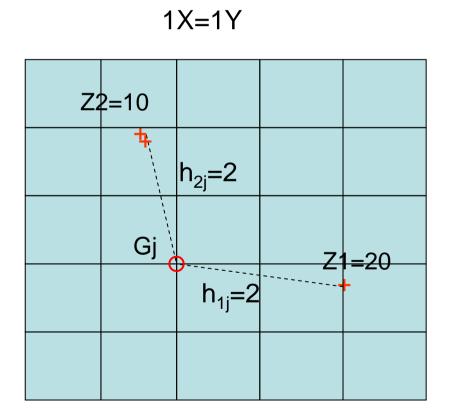
Cycle des températures de décembre à mai -10 -20 -30 Profondeur (m) -40 -50 -60 -70 -80 -90 08/12 07/01 06/02 08/03 07/04 07/05 Date

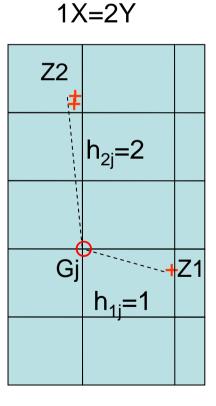
Cela est bien sur le cas quand X et Y ne sont pas de même nature : le temps et l'espace comme dans ce graphique temps/profondeur.

Mais cela doit aussi être envisagé quand les deux dimensions sont de même nature, spatiale par exemple latitude et longitude.

Anisotropie de l'espace de XY

La relation entre les dimensions X et Y de l'espace va avoir un effet immédiat sur le calcul des valeurs des noeuds de la grille à partir des valeurs observées.





Exemple de la prise en compte de l'anisotropie de l'espace

Transformation des x et y dans le cas de données x est un temps en jour et y une profondeur en mètre.

```
facteur=10;
                    % anisotropie entre 1 mètre et 1 jour, ici 10 jours = 1 m
x=x/facteur; % réduction de l'échelle des x (jours)
methode='linear'; % choix de la methode linaire
[XI,YI] = meshgrid((min(x):pas_horz:max(x)),(min(y):pas_vert:max(y))); % génère une grille du minimum au maximum des séries x et y avec les pas
% choisis.
ZI = griddata(x,y,z,XI,YI, methode);
XI=XI*facteur; % rétablissement des valeurs des X à interpoler.
x=x*facteur; % rétablissement des valeurs de x initiales
valcont=([ 11 13 15 17 21 23 25 27 30 ]); valeurs des isolignes
title('Cycle des températures de 1999 à 2005', 'FontSize', 18);
 caxis([12 28]);
 contourf(XI,YI,ZI,valcont);
```

Construction des isolignes (contours) ou de surfaces 3D.

Isolignes.

Il est possible de définir le nombre, l'intervalle, les isovaleurs. Une possibilité de lissage des lignes est disponible.

Surfaces 3D.

Crée la possibilité de représenter 4 dimensions en projetant sur une surface 3 D une représentation par couleur d'une 4eme variable.

Construction des isolignes ou d'isosurfaces.

Utilisation de la fonction contour et contourf.

contour(XI,YI,ZI) : dessin de lignes d'isovaleurs dans un espace à 2 dimensions.

contourf(XI,YI,ZI) : dessin de surfaces d'isovaleurs dans un espace à 2 dimensions.

[C,h] = contourf(XI,YI,ZI,valcont); ou valcont est le vecteur des valeurs des isolignes.

Pour indiquer les valeurs à écrire sur les isolignes.

clabel(C,h); n'indique les étiquettes que sur les isolignes des valeurs du vecteur v.

```
valcont=([ 11 13 15 17 21 23 25 27 30 ]); valeurs des isolignes
title('Cycle des températures de 1999 à 2005','FontSize',18);
    caxis([12 28]);
    contourf(XI,YI,ZI,valcont);
```

Cycle des temperatures 1999-2005

